Economic Feasibility of Offshore Aquaculture in the Gulf of Mexico

Dr. Benedict C. Posadas Assistant Research and Extension Professor of Economics *Mississippi State University - Coastal Research and Extension Center Mississippi Sea Grant Extension Program*

February 18-21, 2003

Aquaculture America 2003

Objectives

- Develop a hypothetical commercial offshore aquaculture production system (COAPS) in the Gulf of Mexico
- Estimate annual costs and returns of COAPS.
- Develop annual cash flows for COAPS.
- Evaluate the economic and financial feasibility of COAPS under different economic and biological scenarios.

February 18-21, 2003

Data Sources

- Offshore aquaculture production system
 - Offshore Aquaculture Consortium (OAC)
- Offshore cage design & operation
 - Ocean Spar and OAC
- Gulf of Mexico and South Atlantic exvessel prices and U.S. Imports
 - National Marine Fisheries Service (NMFS)

Offshore Aquaculture Production System

- Aquaculture Service Vehicle (ASV)
- 3,000-m3 Ocean Spar Sea Station (OSSS) cages
- Moorings, feed distribution system and net cleaners
- Service boats

February 18-21, 2003

Aquaculture America 2003

February 18-21, 2003

- 2-ha base camp
- Office building and trailers
- Trucks and service vehicles
- Fish transport vehicle

February 18-21, 2003

Aquaculture America 2003

Initial Fixed Investment (12-cages or 36,000 m3)

Item	Total Cost (US\$)	US\$/m3
Onshore support facilities	0.33	9
Offshore facilities	3.52	98
Total investment	3.85	107

February 18-21, 2003

Investment Analysis

- Payback period
- Net present value (NPV, US\$M)
- Internal rate of return (IRR, %)

- Base model assumptions
- Improved growth (+25%)
- Enhanced market (+US\$1/kg)
- Enhanced market + improved growth
- Increased or reduced capital outlay
- Higher or lower FCR & feed costs

8

Element of risk & uncertainty

- Culture characteristics
 - Spawning and hatching
 - Growth potential
 - State and federal regulations
- Commercial Harvest
 - Landings
 - Ex vessel Prices
 - South Atlantic
 - Gulf of Mexico

February 18-21, 2003

Aquaculture America 2003

Cobia or Lemon Fish or Ling Rachycentron canadum

- Successfully cultured in ponds and cages in Taiwan.
- Can be grown to at least 5 kg in 12 months.
- Successfully spawned in USA.
- Commercial harvesting is subject to state and federal regulations

10

February 18-21, 2003

- Successfully cultured in ponds and offshore cages in the Gulf of Mexico.
- Can reach 1 kg in 12 months
- Commercial harvesting is subject to state regulations

14

• Illegal to harvest or possess in federal waters

Item	Unit	COBIA12	SNAP12	DRUM12
Stocking density	Fish/m3	7	83	41
Growth rate	G/month	583	37	80
Ex-vessel price	\$/kg	4.25	4.50	3.75
Harvest size	Kg/fish	5.25	0.45	0.97
Fish production	1000 mt/yr	1.08	1.08	1.08
Net returns	\$M/yr	0.8	<0	<0
Payback priod	yr	5.6	Undefined	Undefined
NPV	\$M	2.56	<0	<0
IRR	%	26	<0	<0
Investment		Feasible	Infeasible	Infeasible

the second second second				
Item	Unit	COBIA12	SNAP12	DRUM12
Stocking density	Fish/m3	7	83	41
Growth rate	G/month	583	37	80
Ex-vessel price	\$/kg	5.25	5.50	4.75
Harvest size	Kg/fish	5.25	0.45	0.97
Fish production	1000 mt/yr	1.08	1.08	1.08
Net returns	\$M/yr	1.84	<0	0.17
NPV	\$M	7.84	<0	-0.45
IRR	%	53	<0	7
Investment		Feasible	Infeasible	Infeasible

12- Cage COAPS Improved Growth Model

Item	Unit	COBIA12	SNAP12	DRUM12
Stocking density	Fish/m3	6	67	33
Growth rate	G/month	729	46	100
Ex-vessel price	\$/kg	4.25	4.50	3.75
Harvest size	Kg/fish	6.57	0.56	1.21
Fish production	1000 mt/yr	1.14	1.08	1.08
Net returns	\$M/yr	1.0	<0	<0
NPV	\$М	3.4	<0	<0
IRR	%	32	<0	<0
Investment decision		Feasible	Infeasible	Infeasible

February 18-21, 2003

Aquaculture America 2003

24

- COAPS model assumptions not verified:
 - logistical problems: fingerlings, feed, fish, manpower, supplies
 - pilot scale experiments: fish growth, feed type, feeding, FCR, treatment, stocking, harvest, transport
- Not incorporated in the COAPS model:
 - Broodstock, hatchery and nursery components
 - Processing and distribution components
 - product forms and yields
 - packaging and pricing

February 18-21, 2003

Aquaculture America 2003

ACKNOWLEDGMENT

- Gulf of Mexico Offshore Aquaculture Consortium
- National Sea Grant College Program
- Mississippi-Alabama Sea Grant Consortium

February 18-21, 2003

Aquaculture America 2003

26